

8-Mbit (512K x 16) Static RAM

Features

■ Very high speed: 45 ns

■ Wide voltage range: 2.2 V to 3.6 V and 4.5 V to 5.5 V

■ Ultra low standby power

Typical Standby current: 2 μA

Maximum Standby current: 8 μA

■ Ultra low active power

□ Typical active current: 1.8 mA at f = 1 MHz

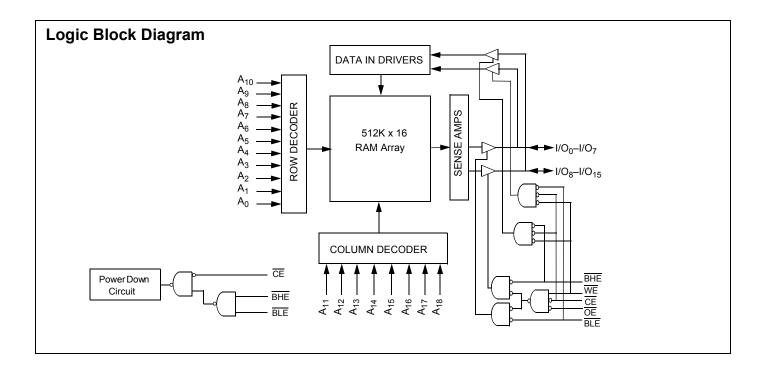
■ Easy memory expansion with CE and OE features

■ Automatic power down when deselected

 Complementary metal oxide semiconductor (CMOS) for optimum speed and power

Available in Pb-free 44-pin thin small outline package (TSOP) II package

Functional Description


The CY62157ESL is a high performance CMOS static RAM organized as 512K words by 16 bits. This device features advanced circuit design to provide ultra low active current. This is ideal for providing More Battery Life™ (MoBL®) in portable applications such as cellular telephones. The device also has an

automatic power down feature that significantly reduces power consumption when addresses are not toggling. Place the device into standby mode when deselected (CE HIGH or both BHE and BLE are HIGH). The input or output pins (I/O $_0$ through I/O $_{15}$) are placed in a high impedance state when the device is deselected (CE HIGH), the outputs are disabled (OE HIGH), both the Byte High Enable and the Byte Low Enable are disabled (BHE, BLE HIGH), or during an active write operation (CE LOW and WE LOW).

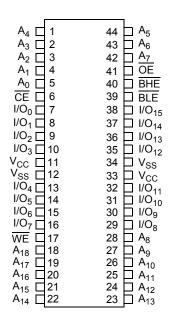
 $\overline{\text{To w}}$ rite to the device, take Chip Enable $\overline{(\text{CE})}$ and Write Enable $\overline{(\text{WE})}$ inputs LOW. If Byte Low Enable (BLE) is LOW, then data from I/O pins (I/O₀ through I/O₇) is written into the location specified on the address pins (A₀ through A₁₈). If Byte High Enable (BHE) is LOW, then data from I/O pins (I/O₈ through I/O₁₅) is written into the location specified on the address pins (A₀ through A₁₈).

To read from the device, take Chip Enable $(\overline{\text{CE}})$ and Output Enable $(\overline{\text{OE}})$ LOW while forcing the Write Enable $(\overline{\text{WE}})$ HIGH. If Byte Low Enable $(\overline{\text{BLE}})$ is LOW, then data from the memory location specified by the address pins appear on I/O $_0$ to I/O $_7$. If Byte High Enable $(\overline{\text{BHE}})$ is LOW, then data from memory appears on I/O $_8$ to I/O $_{15}$. See the Truth Table on page 11 for a complete description of read and write modes.

For best practice recommendations, refer to the Cypress application note AN1064, SRAM System Guidelines.

[+] Feedback

Contents


Pin Configuration	3
Product Portfolio	3
Maximum Ratings	4
Operating Range	4
Electrical Characteristics	4
Capacitance	5
Thermal Resistance	5
Data Retention Characteristics	6
Switching Characteristics	7
Switching Waveforms	8

Truth Table	11
Ordering Information	12
Package Diagram	12
Acronyms	12
Document History Page	13
Sales, Solutions, and Legal Information	13
Worldwide Sales and Design Support	13
Products	
PSoC Solutions	13

Pin Configuration

Figure 1. 44-Pin TSOP II (Top View)

Product Portfolio

					Power Dissipati		ssipation	n	
Product	Range	V _{CC} Range (V) ^[1]	Speed	Operating I _{CC} , (mA)		A)	Standby, I _{SB2}		
Product	Range	ACC Manage (A)	(ns)	f = 1MHz f = f _r		: max	(μ A)		
				Typ ^[2]	Max	Typ [2]	Max	Typ [2]	Max
CY62157ESL	Industrial	2.2 V-3.6 V and 4.5 V-5.5 V	45	1.8	3	18	25	2	8

^{1.} Datasheet specifications are not guaranteed for V_{CC} in the range of 3.6 V to 4.5 V.

^{2.} Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = 3V, and V_{CC} = 5V, T_A = 25°C.

Maximum Ratings

Exceeding the maximum ratings may impair the useful life of the device. These user quidelines are not tested.

device. These deer galdemies are her ter	otou.
Storage Temperature	–65 °C to +150 °C
Ambient Temperature with Power Applied	–55 °C to +125 °C
Supply Voltage to Ground Potential	0.5 V to 6.0 V
DC Voltage Applied to Outputs in High-Z State ^[1, 2]	–0.5 V to 6.0 V
DC Input Voltage ^[1, 2]	–0.5 V to 6.0 V

Output Current into Outputs (LOW)	20 mA
Static Discharge Voltage(MIL-STD-883, Method 3015)	>2001 V
Latch up Current	>200 mA

Operating Range

Device	Range	Ambient Temperature	V _{CC} ^[1]
CY62157ESL	Industrial	–40°C to +85°C	2.2 V–3.6 V, and 4.5 V–5.5 V

^{1.} Full device AC operation assumes a 100 μs ramp time from 0 to $V_{CC} \, (\mbox{min})$ and 200 μs wait time after V_{CC} stabilization.

Electrical Characteristics

Over the Operating Range

				45 ns	3	
Description	Test C	Conditions	Min	Typ ^[1]	Max	Unit
Output high voltage	2.2 ≤ V _{CC} ≤ 2.7	I _{OH} = -0.1 mA	2.0			V
	2.7 ≤ V _{CC} ≤ 3.6	I _{OH} = -1.0 mA	2.4			
	4.5 ≤ V _{CC} ≤ 5.5	I _{OH} = -1.0 mA	2.4			
Output low voltage	2.2 ≤ V _{CC} ≤ 2.7	I _{OL} = 0.1 mA			0.4	V
	2.7 ≤ V _{CC} ≤ 3.6	I _{OL} = 2.1 mA			0.4	
	4.5 ≤ V _{CC} ≤ 5.5	I _{OL} = 2.1 mA			0.4	
Input high voltage	2.2 ≤ V _{CC} ≤ 2.7	•	1.8		V _{CC} + 0.3	V
	2.7 ≤ V _{CC} ≤ 3.6		2.2		V _{CC} + 0.3	
	4.5 ≤ V _{CC} ≤ 5.5		2.2		V _{CC} + 0.5	
Input low voltage	2.2 ≤ V _{CC} ≤ 2.7		-0.3		0.6	V
	2.7 ≤ V _{CC} ≤ 3.6		-0.3		0.8	
	4.5 ≤ V _{CC} ≤ 5.5		-0.5		0.8	
Input leakage current	$GND \le V_1 \le V_{CC}$		-1		+1	μА
Output leakage current	$GND \le V_O \le V_{CC}$, Output	Disabled	-1		+1	μА
V _{CC} operating supply	$f = f_{max} = 1/t_{RC}$	$V_{CC} = V_{CCmax}$		18	25	mA
current	f = 1 MHz	I _{OUT} = 0 mA, CMOS levels		1.8	3	
Automatic CE power				2	8	μА
	f = f _{max} (address and date	ta <u>on</u> ly),				
•		• • • • • • • • • • • • • • • • • • • •				
		$V_{CC} - 0.2 \text{ V or } V_{IN} \leq 0.2 \text{ V},$		2	8	μА
	$f = 0$, $V_{CC} = V_{CC(max)}$					
	Output high voltage Output low voltage Input high voltage Input low voltage Input leakage current Output leakage current V _{CC} operating supply current Automatic CE power down current — CMOS inputs Automatic CE power	Output high voltage	$\begin{array}{c} \text{Output high voltage} \\ & 2.2 \leq \text{V}_{\text{CC}} \leq 2.7 \\ & 2.7 \leq \text{V}_{\text{CC}} \leq 3.6 \\ & _{\text{OH}} = -1.0 \text{ mA} \\ \hline & 4.5 \leq \text{V}_{\text{CC}} \leq 5.5 \\ & _{\text{OH}} = -1.0 \text{ mA} \\ \hline & 2.2 \leq \text{V}_{\text{CC}} \leq 2.7 \\ & _{\text{OL}} = 0.1 \text{ mA} \\ \hline & 2.7 \leq \text{V}_{\text{CC}} \leq 3.6 \\ & _{\text{OL}} = 2.1 \text{ mA} \\ \hline & 4.5 \leq \text{V}_{\text{CC}} \leq 5.5 \\ \hline & _{\text{OL}} = 2.1 \text{ mA} \\ \hline & 2.2 \leq \text{V}_{\text{CC}} \leq 2.7 \\ \hline & 2.7 \leq \text{V}_{\text{CC}} \leq 3.6 \\ \hline & 4.5 \leq \text{V}_{\text{CC}} \leq 3.6 \\ \hline & 4.5 \leq \text{V}_{\text{CC}} \leq 5.5 \\ \hline \\ \hline \text{Input low voltage} \\ \hline & 2.2 \leq \text{V}_{\text{CC}} \leq 2.7 \\ \hline & 2.7 \leq \text{V}_{\text{CC}} \leq 3.6 \\ \hline & 4.5 \leq \text{V}_{\text{CC}} \leq 5.5 \\ \hline \\ \hline \text{Input leakage current} \\ \hline \text{Output leakage current} \\ \hline \text{Output leakage current} \\ \hline \text{Over operating supply current} \\ \hline & f = f_{\text{max}} = 1/t_{\text{RC}} \\ \hline \text{for all mHz} \\ \hline & _{\text{OUT}} = 0 \text{ mA}, \\ \hline \text{CMOS levels} \\ \hline \text{Automatic CE power down current} \\ \hline \text{Output lower} \\ \hline Output lower$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ c c c c } \hline \textbf{Description} & \textbf{Test Conditions} & \textbf{Min} & \textbf{Typ}^{[1]} \\ \hline \textbf{Output high voltage} & 2.2 \leq V_{CC} \leq 2.7 & I_{OH} = -0.1 \text{ mA} & 2.0 \\ \hline 2.7 \leq V_{CC} \leq 3.6 & I_{OH} = -1.0 \text{ mA} & 2.4 \\ \hline 4.5 \leq V_{CC} \leq 5.5 & I_{OH} = -1.0 \text{ mA} & 2.4 \\ \hline \textbf{Output low voltage} & 2.2 \leq V_{CC} \leq 2.7 & I_{OL} = 0.1 \text{ mA} \\ \hline 2.7 \leq V_{CC} \leq 3.6 & I_{OL} = 2.1 \text{ mA} \\ \hline 4.5 \leq V_{CC} \leq 5.5 & I_{OL} = 2.1 \text{ mA} \\ \hline \textbf{Input high voltage} & 2.2 \leq V_{CC} \leq 2.7 \\ \hline 2.7 \leq V_{CC} \leq 3.6 & 2.2 \\ \hline \textbf{Input low voltage} & 2.2 \leq V_{CC} \leq 2.7 \\ \hline 2.7 \leq V_{CC} \leq 3.6 & 2.2 \\ \hline \textbf{Input leakage current} & 2.2 \leq V_{CC} \leq 2.7 \\ \hline \textbf{2.7} \leq V_{CC} \leq 3.6 & -0.3 \\ \hline \textbf{4.5} \leq V_{CC} \leq 5.5 & -0.5 \\ \hline \textbf{Input leakage current} & GND \leq V_1 \leq V_{CC} \\ \hline \textbf{Output leakage current} & GND \leq V_1 \leq V_{CC} \\ \hline \textbf{Output leakage current} & GND \leq V_0 \leq V_{CC}, \text{Output Disabled} \\ \hline \textbf{V}_{CC} \text{ operating supply} & f = f_{max} = 1/t_{RC} & V_{CC} = V_{CCmax} \\ \hline \textbf{f} = 1 \text{ MHz} & I_{OUT} = 0 \text{ mA}, \\ \hline \textbf{CMOS levels} \\ \hline \textbf{Automatic CE power} \\ \hline \textbf{down current} & \hline \textbf{CE} \geq V_{CC} - 0.2 \text{ V, V}_{IN} \geq V_{CC} - 0.2 \text{ V or V}_{IN} \leq 0.2 \text{ V,} \\ \textbf{f} = f_{max} (\text{address and data only}), \\ \textbf{f} = 0 (\overline{\textbf{OE}}, \overline{\textbf{BHE}}, \overline{\textbf{BLE}} \text{ and } \overline{\textbf{WE}}), V_{CC} = V_{CC(max)} \\ \hline \hline \textbf{2} \\ \hline$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

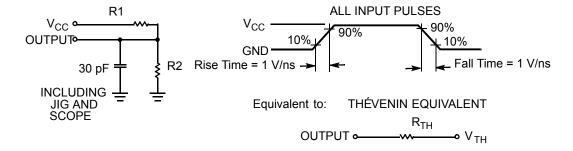
^{1.} Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = 3V, and V_{CC} = 5V, T_A = 25°C.

- 1. V_{IL} (min) = -2.0V for pulse durations less than 20 ns. 2. V_{IH} (max) = V_{CC} + 0.75V for pulse durations less than 20 ns.

^{2.} Only chip enable (CE) needs to be tied to CMOS levels to meet the I_{SB2} / I_{CCDR} spec. Other inputs can be left floating.

Capacitance

Tested initially and after any design or process changes that may affect these parameters.


Parameter	Description	Test Conditions	Max	Unit
C _{IN}	Input capacitance	$T_A = 25 ^{\circ}\text{C}, f = 1 \text{MHz}, V_{CC} = V_{CC(typ)}$	10	pF
C _{OUT}	Output capacitance		10	pF

Thermal Resistance

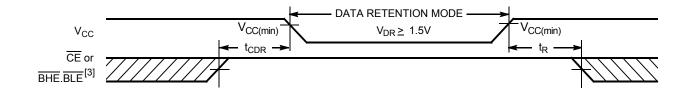
Tested initially and after any design or process changes that may affect these parameters.

Parameter	Description	Test Conditions	TSOP II	Unit
- 3/		Still Air, soldered on a 3 × 4.5 inch, two-layer printed circuit board	77	°C/W
- 30	Thermal resistance (Junction to case)		13	°C/W

Figure 2. AC Test Loads and Waveforms

Parameters	2.5 V	3.0 V	5.0 V	Unit
R1	16667	1103	1800	Ω
R2	15385	1554	990	Ω
R _{TH}	8000	645	639	Ω
V _{TH}	1.20	1.75	1.77	V

Data Retention Characteristics


Over the Operating Range

Parameter	Description	Conditions		Min	Typ ^[1]	Max	Unit
V_{DR}	V _{CC} for data retention			1.5			V
I _{CCDR}	Data retention current	$\overline{\text{CE}} \ge \text{V}_{\text{CC}} - 0.2 \text{ V},$	V _{CC} = 1.5 V		2	5	μΑ
		$V_{IN} \ge V_{CC} - 0.2 \text{ V or } V_{IN} \le 0.2 \text{ V}$	V _{CC} = 2.0 V		2	8	
t _{CDR} ^[2]	Chip deselect to data retention time		•	0			ns
t _R [3]	Operation recovery time			t _{RC}			ns

- 1. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = 3V, and V_{CC} = 5V, T_A = 25°C.
- 2. Tested initially and after any design or process changes that may affect these parameters.

 3. Full device operation requires linear V_{CC} ramp from V_{DR} to $V_{CC(min)} \ge 100~\mu s$ or stable at $V_{CC(min)} \ge 100~\mu s$.

Figure 3. Data Retention Waveform

Note

3. BHE.BLE is the AND of both BHE and BLE. Deselect the chip by either disabling chip enable signals or by disabling both BHE and BLE.

Switching Characteristics

Over the Operating Range [1]

Doromotor	Book to the	45	ns	11.2
Parameter	Description	Min	Max	Unit
Read Cycle		•		
t _{RC}	Read cycle time	45		ns
t _{AA}	Address to data valid		45	ns
t _{OHA}	Data hold from address change	10		ns
t _{ACE}	CE LOW to data valid		45	ns
t _{DOE}	OE LOW to data valid		22	ns
t _{LZOE}	OE LOW to LOW-Z ^[2]	5		ns
t _{HZOE}	OE HIGH to High-Z ^[2, 3]		18	ns
t _{LZCE}	CE LOW to Low-Z ^[2]	10		ns
t _{HZCE}	CE HIGH to High-Z ^[2, 3]		18	ns
t _{PU}	CE LOW to power up	0		ns
t _{PD}	CE HIGH to power down		45	ns
t _{DBE}	BLE/BHE LOW to data valid		45	ns
t _{LZBE}	BLE/BHE LOW to Low-Z ^[2, 4]	5		ns
t _{HZBE}	BLE/BHE HIGH to HIGH-Z ^[2, 3]		18	ns
Write Cycle ^[5]		·		
t _{WC}	Write cycle time	45		ns
t _{SCE}	CE LOW to write end	35		ns
t _{AW}	Address setup to write end	35		ns
t _{HA}	Address hold from write end	0		ns
t _{SA}	Address setup to write start	0		ns
t _{PWE}	WE pulse width	35		ns
t _{BW}	BLE/BHE LOW to write end	35		ns
t _{SD}	Data setup to write end	25		ns
t _{HD}	Data hold from write end	0		ns
t _{HZWE}	WE LOW to High-Z ^[2, 3]		18	ns
t _{LZWE}	WE HIGH to Low-Z ^[2]	10		ns

^{1.} Test conditions for all parameters other than tri-state parameters assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3V, and output loading of the specified I_{OL}/I_{OH} as shown in the AC Test Loads and Waveforms on page 5.

^{2.} At any temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZBE} is less than t_{LZBE}, t_{HZOE} is less than t_{LZDE}, and t_{HZWE} is less than t_{LZWE} for any device.

t_{HZOE}, t_{HZEE}, and t_{HZWE} transitions are measured when the outputs enter a high-impedance state.
 If both byte enables are toggled together, this value is 10 ns.
 The internal write time of the memory is defined by the overlap of WE, CE = V_{IL}, BHE, BLE or both = V_{IL}. All signals must be active to initiate a write and any of these signals can terminate a write by going inactive. The data input setup and hold timing must be referenced to the edge of the signal that terminates the write.

Switching Waveforms

Figure 4. Read Cycle No.1: Address Transition Controlled. [4, 5]

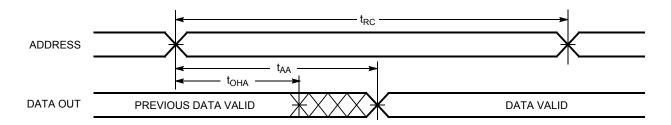
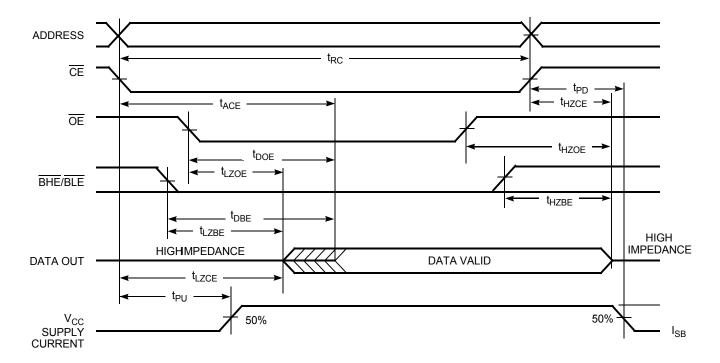



Figure 5. Read Cycle No. 2: $\overline{\text{OE}}$ Controlled [5, 6]

- The device is continuously selected. OE, CE = V_{IL}, BHE, BLE, or both = V_{IL}.
 WE is HIGH for read cycle.
 Address valid before or similar to CE, BHE, BLE transition LOW.

Switching Waveforms (continued)

Figure 6. Write Cycle No 1: WE Controlled [5, 7, 8]

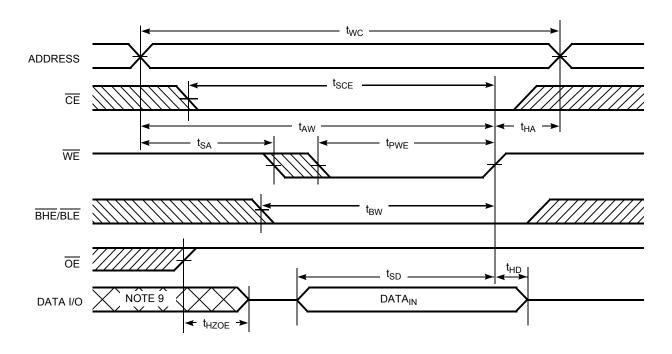
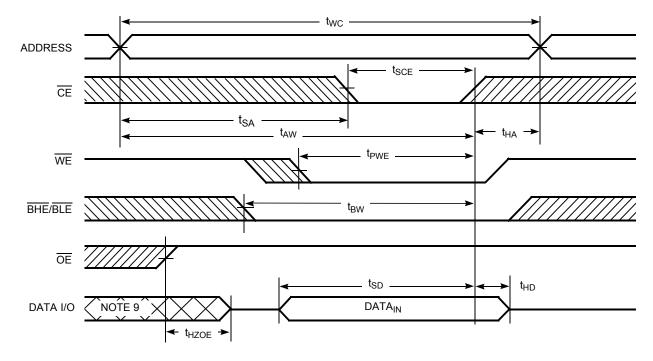



Figure 7. Write Cycle 2: $\overline{\text{CE}}$ Controlled [5, 7, 8]

Notes

- Data I/O is high impedance if OE = V_{IH}.
 If CE goes HIGH simultaneously with WE = V_{IH}, the output remains in a high impedance state.
 During this period, the I/Os are in output state. Do not apply input signals.

Switching Waveforms (continued)

Figure 8. Write Cycle 3: WE controlled, OE LOW [8]

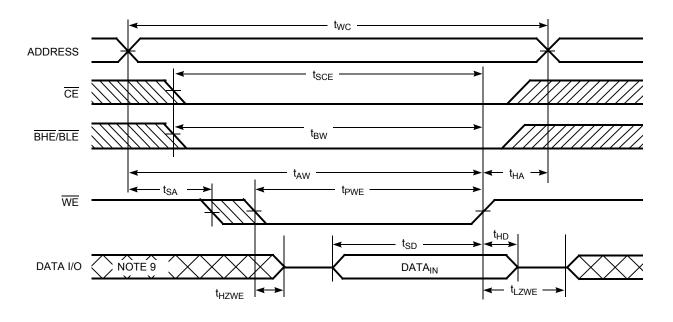
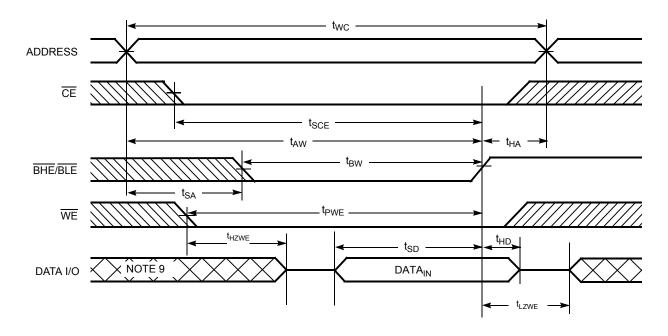
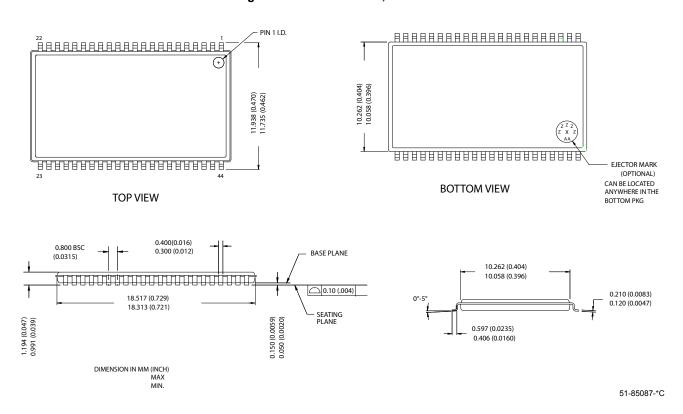



Figure 9. Write Cycle 4: BHE/BLE Controlled, OE LOW [8]

Truth Table

CE	WE	OE	BHE	BLE	Inputs/Outputs	Mode	Power
Н	Х	Х	Х	Х	High-Z	Deselect/power down	Standby (I _{SB})
X ^[1]	Х	Х	Н	Η	High-Z	Deselect/power down	Standby (I _{SB})
L	Н	L	L	L	Data Out (I/O ₀ –I/O ₁₅)	Read	Active (I _{CC})
L	Н	L	Н	L	Data Out (I/O ₀ –I/O ₇); I/O ₈ –I/O ₁₅ in High-Z	Read	Active (I _{CC})
L	Н	L	L	Н	Data Out (I/O ₈ –I/O ₁₅); I/O ₀ –I/O ₇ in High-Z	Read	Active (I _{CC})
L	Н	Н	L	L	High-Z	Output disabled	Active (I _{CC})
L	Н	Н	Н	L	High-Z	Output disabled	Active (I _{CC})
L	Н	Н	L	Η	High-Z	Output disabled	Active (I _{CC})
L	L	Х	L	L	Data In (I/O ₀ –I/O ₁₅)	Write	Active (I _{CC})
L	L	X	Н	L	Data In (I/O ₀ –I/O ₇); I/O ₈ –I/O ₁₅ in High-Z	Write	Active (I _{CC})
L	L	Х	L	Н	Data In (I/O ₈ –I/O ₁₅); Write I/O ₀ –I/O ₇ in High-Z		Active (I _{CC})

^{1.} The 'X' (Don't care) state for the Chip enable in the truth table refers to the logic state (either HIGH or LOW). Intermediate voltage levels on this pin is not permitted.



Ordering Information

Speed (ns)	Ordering Code	Package Diagram		Operating Range
45	CY62157ESL-45ZSXI	51-85087	44-pin thin small outline package type II (Pb-free)	Industrial

Package Diagram

Figure 10. 44-Pin TSOP II, 51-85087

Acronyms

Acronym	Description
CMOS	complementary metal oxide semiconductor
I/O	input/output
SRAM	static random access memory
VFBGA	very fine ball gird array
TSOP	thin small outline package

Document History Page

Document Title: CY62157ESL MoBL [®] 8-Mbit (512K x 16) Static RAM Document Number: 001-43141						
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change		
**	1875228	See ECN	VKN/AESA	New Data Sheet		
*A	2943752	06/03/2010		Added Contents Added footnote for the ISB2 parameter in Electrical Characteristics Added footnote related to chip enable in Truth Table Updated Package Diagram Added Sales, Solutions, and Legal Information		

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

USB Controllers

Wireless/RF

Automotive cypress.com/go/automotive Clocks & Buffers cypress.com/go/clocks Interface cypress.com/go/interface **Lighting & Power Control** cypress.com/go/powerpsoc cypress.com/go/plc Memory cypress.com/go/memory Optical & Image Sensing cypress.com/go/image **PSoC** cypress.com/go/psoc **Touch Sensing** cypress.com/go/touch

PSoC Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 5

© Cypress Semiconductor Corporation, 2008-2010. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

cypress.com/go/USB

cypress.com/go/wireless

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document #: 001-43141 Rev. *A

Revised June 03, 2010

Page 13 of 13

MoBL is a registered trademark and More Battery Life is a trademark of Cypress Semiconductor. All product and company names mentioned in this document are the trademarks of their respective holders.